Cationic polyelectrolyte-mediated delivery of antisense morpholino oligonucleotides for exon-skipping in vitro and in mdx mice
نویسندگان
چکیده
In this study, we investigated a series of cationic polyelectrolytes (PEs) with different size and composition for their potential to improve delivery of an antisense phosphorodiamidate morpholino oligomer (PMO) both in vitro and in vivo. The results showed that the poly(diallyldimethylammonium chloride) (PDDAC) polymer series, especially PE-3 and PE-4, improves the delivery efficiency of PMO, comparable with Endoporter-mediated PMO delivery in vitro. The enhanced PMO delivery and targeting to dystrophin exon 23 was further observed in mdx mice, up to fourfold with the PE-4, compared with PMO alone. The cytotoxicity of the PEs was lower than that of Endoporter and polyethylenimine 25,000 Da in vitro, and was not clearly detected in muscle in vivo under the tested concentrations. Together, these results demonstrate that optimization of PE molecular size, composition, and distribution of cationic charge are key factors to achieve enhanced PMO exon-skipping efficiency. The increased efficiency and lower toxicity show this PDDAC series to be capable gene/antisense oligonucleotide delivery-enhancing agents for treating muscular dystrophy and other diseases.
منابع مشابه
Morpholino antisense oligonucleotide induced dystrophin exon 23 skipping in mdx mouse muscle.
The mdx mouse model of muscular dystrophy arose due to a nonsense mutation in exon 23 of the dystrophin gene. We have previously demonstrated that 2'-O-methyl phosphorothioate antisense oligonucleotides (AOs) can induce removal of exon 23 during processing of the primary transcript. This results in an in-frame mRNA transcript and subsequent expression of a slightly shorter dystrophin protein in...
متن کاملEvaluation of Amphiphilic Peptide Modified Antisense Morpholino Oligonucleotides In Vitro and in Dystrophic mdx Mice
A series of amphiphilic peptides modified PMO (Pt-PMO) were prepared, and their antisense effect and toxicity were evaluated both in vitro and in mdx mice. The results showed that the exon-skipping performance of Pt-PMO are relative to the structure of the conjugated peptide: the Pt3/Pt4 composed of six/seven arginines and one myristoylation modified PMO showed more efficacy and with less toxic...
متن کاملSynthesis of a Morpholino Nucleic Acid (MNA)-Uridine Phosphoramidite, and Exon Skipping Using MNA/2'-O-Methyl Mixmer Antisense Oligonucleotide.
In this study, we synthesised a morpholino nucleoside-uridine (MNA-U) phosphoramidite and evaluated the potential of a MNA-modified antisense oligonucleotide (AO) sequences to induce exon 23 skipping in mdx mouse myotubes in vitro towards extending the applicability of morpholino chemistry with other nucleotide monomers. We designed, synthesised, and compared exon skipping efficiencies of 20 me...
متن کاملPoly(ester amine) Composed of Polyethylenimine and Pluronic Enhance Delivery of Antisense Oligonucleotides In Vitro and in Dystrophic mdx Mice
A series of poly(esteramine)s (PEAs) constructed from low molecular weight polyethyleneimine (LPEI) and Pluronic were evaluated for the delivery of antisense oligonuclotides (AOs), 2'-O-methyl phosphorothioate RNA (2'-OMePS) and phosphorodiamidate morpholino oligomer (PMO) in cell culture and dystrophic mdx mice. Improved exon-skipping efficiency of both 2'-OMePS and PMO was observed in the C2C...
متن کاملEffective Exon Skipping and Dystrophin Restoration by 2′-O-Methoxyethyl Antisense Oligonucleotide in Dystrophin-Deficient Mice
Antisense oligonucleotide (AO)-mediated exon-skipping therapy is one of the most promising therapeutic strategies for Duchenne Muscular Dystrophy (DMD) and several AO chemistries have been rigorously investigated. In this report, we focused on the effect of 2'-O-methoxyethyl oligonucleotides (MOE) on exon skipping in cultured mdx myoblasts and mice. Efficient dose-dependent skipping of targeted...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015